Pengelompokkan Data Kasus Covid-19 di Sumatera Utara Menggunakan Metode K-Means
Main Article Content
Abstract
Cluster analysis is a multivariate technique aimed at grouping objects into distinct categories, where there are significant differences between the groups, while the objects within a group are similar or relatively close. In this study, the distance used for grouping objects is Euclidean distance. This research aims to cluster the regencies/cities in North Sumatra based on Covid-19 case data from November 4, 2021, and to identify the characteristics of each formed cluster based on the categories of Covid-19 case distribution levels, namely high (Cluster 1), moderate (Cluster 2), and low (Cluster 3). The results show that, out of 33 regencies/cities analyzed, 3 clusters were formed. Cluster 1 consists of 1 member, Cluster 2 consists of 13 members, and Cluster 3 consists of 18 members, while 1 regency/city is identified as an outlier. This study provides insights into the grouping of areas based on the level of Covid-19 case distribution, which can serve as a basis for decision-making regarding the management of the pandemic.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
Darmansah, Ni Wayan Wardani. 2021. Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clstering. Jurnal Teknik Informatika dan Sistem Informasi Vol. 8 No. 1. Institut Teknologi Telkom Purwokerto.
Ediyanto et al. 2013. Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 02(2), 133-136
Everitt, B. 1974. Cluster Analysis. London: Heinemann.
Fathia, A. N. et al. 2016. Analisis Klaster Kecamatan di Kabupaten Semarang Berdasarkan Potensi Desa Menggunakan Metode K-Means. None, 5(4), 801-810.
Irwinsyah, Edy dan Muhammad Faisal. 2015. Advanced Clustering Teori dan Aplikasi. Bandung: Graha Ilmu.
Johnson dan Winchen. 1998. Applied Multivariate Statistical Analysis 4th Edition. Pearson Education International, New Jersey.
Kemenkes RI. 2020. Tanya Jawab Seputar Virus Corona. 119-135.
Kim Sung Hwan. Weighted K-Menas Support Vektor Machine For Cancer Prediction. Kim SpringPlus (2016) 5:1162 DOI 10.1186/s40064-016-2677-4.
Kurniawan, Robert et al. 2019. Cara Mudah Belajar Statistik Analisis Data dan Eksplorasi. Jakarta: Kencana.
Kusrini dan E.T. Luthfi. 2009. Algoritma Data Mining. Yogyakarta: C.V Andi Offset.
Nariawati, Umi. 2008. Teknik-teknik Analisis Multivariat untuk Riset Ekonomi. Surabaya: Graha Ilmu.
Pittara, dr. 2020. “Covid-19”. http://www.alodokter.com/covid-19, diakses pada 10 November 2021 pukul 20.23.
Usman, Hardius dan Nurdin Sobari. 2013. Aplikasi Teknik Multivariate. Jakarta: PT Raja Grafindo Persada.
Wang, Xiaoyan and Yanping Bai. The Global Minimax K-Means Algorithm. Springer Plus (2016) 5:1665 DOI 10.1186/s40064-3329-4
Wanto, Anjar et al. 2020. Data Mining Algoritma dan Implementasi. Jakarta: Yayasan Kita Menulis.
Widayat. 2018. Statistik Multivariat pada Bidang Manajemen dan Bisnis. Malang: Universitas Muhammadiyah Malang.
Zulia Imami Alfianti. 2021. Pengelompokan Wilayah Penyebaran Covid-19 di Kabupaten Karawang Menggunakan Algoritma K-Means. Jurnal Universitas Bina Sarana Informatika Vol. 26 No. 2. Kampus Kabupaten Karawang.