Pengelompokkan Data Kasus Covid-19 di Sumatera Utara Menggunakan Metode K-Means

Main Article Content

Siti Sahara Hsb
Pasukat Sembiring

Abstract

Cluster analysis is a multivariate technique aimed at grouping objects into distinct categories, where there are significant differences between the groups, while the objects within a group are similar or relatively close. In this study, the distance used for grouping objects is Euclidean distance. This research aims to cluster the regencies/cities in North Sumatra based on Covid-19 case data from November 4, 2021, and to identify the characteristics of each formed cluster based on the categories of Covid-19 case distribution levels, namely high (Cluster 1), moderate (Cluster 2), and low (Cluster 3). The results show that, out of 33 regencies/cities analyzed, 3 clusters were formed. Cluster 1 consists of 1 member, Cluster 2 consists of 13 members, and Cluster 3 consists of 18 members, while 1 regency/city is identified as an outlier. This study provides insights into the grouping of areas based on the level of Covid-19 case distribution, which can serve as a basis for decision-making regarding the management of the pandemic.

Article Details

How to Cite
Pengelompokkan Data Kasus Covid-19 di Sumatera Utara Menggunakan Metode K-Means. (2024). IJM: Journal of Multidisiplinary, 3(1). https://ojs.csspublishing.com/index.php/ijm/article/view/31
Section
Articles

How to Cite

Pengelompokkan Data Kasus Covid-19 di Sumatera Utara Menggunakan Metode K-Means. (2024). IJM: Journal of Multidisiplinary, 3(1). https://ojs.csspublishing.com/index.php/ijm/article/view/31

References

Darmansah, Ni Wayan Wardani. 2021. Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clstering. Jurnal Teknik Informatika dan Sistem Informasi Vol. 8 No. 1. Institut Teknologi Telkom Purwokerto.

Ediyanto et al. 2013. Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 02(2), 133-136

Everitt, B. 1974. Cluster Analysis. London: Heinemann.

Fathia, A. N. et al. 2016. Analisis Klaster Kecamatan di Kabupaten Semarang Berdasarkan Potensi Desa Menggunakan Metode K-Means. None, 5(4), 801-810.

Irwinsyah, Edy dan Muhammad Faisal. 2015. Advanced Clustering Teori dan Aplikasi. Bandung: Graha Ilmu.

Johnson dan Winchen. 1998. Applied Multivariate Statistical Analysis 4th Edition. Pearson Education International, New Jersey.

Kemenkes RI. 2020. Tanya Jawab Seputar Virus Corona. 119-135.

Kim Sung Hwan. Weighted K-Menas Support Vektor Machine For Cancer Prediction. Kim SpringPlus (2016) 5:1162 DOI 10.1186/s40064-016-2677-4.

Kurniawan, Robert et al. 2019. Cara Mudah Belajar Statistik Analisis Data dan Eksplorasi. Jakarta: Kencana.

Kusrini dan E.T. Luthfi. 2009. Algoritma Data Mining. Yogyakarta: C.V Andi Offset.

Nariawati, Umi. 2008. Teknik-teknik Analisis Multivariat untuk Riset Ekonomi. Surabaya: Graha Ilmu.

Pittara, dr. 2020. “Covid-19”. http://www.alodokter.com/covid-19, diakses pada 10 November 2021 pukul 20.23.

Usman, Hardius dan Nurdin Sobari. 2013. Aplikasi Teknik Multivariate. Jakarta: PT Raja Grafindo Persada.

Wang, Xiaoyan and Yanping Bai. The Global Minimax K-Means Algorithm. Springer Plus (2016) 5:1665 DOI 10.1186/s40064-3329-4

Wanto, Anjar et al. 2020. Data Mining Algoritma dan Implementasi. Jakarta: Yayasan Kita Menulis.

Widayat. 2018. Statistik Multivariat pada Bidang Manajemen dan Bisnis. Malang: Universitas Muhammadiyah Malang.

Zulia Imami Alfianti. 2021. Pengelompokan Wilayah Penyebaran Covid-19 di Kabupaten Karawang Menggunakan Algoritma K-Means. Jurnal Universitas Bina Sarana Informatika Vol. 26 No. 2. Kampus Kabupaten Karawang.