Perancangan Aplikasi Smart Notes untuk Monitoring Alat Praktik Kelistrikan Berbasis Machine Learning

Main Article Content

M. Septian Nanda
Tata Sutabri

Abstract

The digital transformataion of the Industrial 4.0 era demands intelligent monitoring systems to enhance the reliability and efficiency of electrical equipment, including within technical education environments. The main problem encountered is that monitoring of practical electrical equipment is still performed manually through logbook entries, which are prone to errors, data loss, and delays in fault detection. This study aims to develop a Smart Notes application that integrates user-generated notes with Internet of Things (IoT)-based sensor data and a machine learning predictive model to support real-time preventive maintenance. A quantitative approach was employed by analyzing parameters such as current, voltage, temperature, power, and frequency using rule-based algorithms and drift detection methods to identify anomalies. The results show that the system can classify equipment conditions into three main statuses NORMAL, ATTENTION, and OVERLOAD with high reliability while providing additional context through user narrative input. It is concluded that the integration of sensor data and user notes in Smart Notes effectively improves monitoring accuracy, maintenance efficiency, and digital literacy in technical education laboratories.

Article Details

How to Cite
Perancangan Aplikasi Smart Notes untuk Monitoring Alat Praktik Kelistrikan Berbasis Machine Learning. (2025). IJM: Journal of Multidisiplinary, 3(5). https://ojs.csspublishing.com/index.php/ijm/article/view/297
Section
Articles

How to Cite

Perancangan Aplikasi Smart Notes untuk Monitoring Alat Praktik Kelistrikan Berbasis Machine Learning. (2025). IJM: Journal of Multidisiplinary, 3(5). https://ojs.csspublishing.com/index.php/ijm/article/view/297

References

Fahlevvi, M.R., Kusuma, K.A.P.I., Anugerah, M.W., 2025. Integrasi Teknologi Digital dalam Pengawasan Internal Inspektorat Daerah Kabupaten Gianyar. J. SYNTAX IMPERATIF J. Ilmu Sos. Dan Pendidik. 6, 236–249.

Hadi, A., Widiyasono, N., Slamet, I., Permana, A.A.J., Pasrun, Y.P., Adawiyah, R., Abdurrohim, I., 2024. Buku Ajar Metodologi Penelitian Ilmu Komputer: Dilengkapi dengan Studi Kasus. PT. Sonpedia Publishing Indonesia.

Hutomo, R.G.W.S., 2025. Implementasi Pemeliharaan Prediktif Mesin Printing di UMKM Batik X dengan Metode Long Short-term Memory (LSTM) dan Gated Recurrent Unit (GRU) (PhD Thesis). Universitas Islam Indonesia.

Ilhansyah, R.N., Nugroho, T.B., Romdoni, M., Syahid, A., 2024. Correlation of Informal Study Frequency and English Reading Proficiency Among EFL Learners. PESHUM J. Pendidik. Sos. Dan Hum. 4, 1326–1333.

Jesudass, N., Ramkumar, V., Kumar, S., Venkatesh, L., 2024. Development of a conceptual framework to understand the stakeholder’s perspectives on needs and readiness of rural tele-practice for childhood communication disorders. Wellcome Open Res. 9, 239.

Khaidar, A., Fikry, M., 2025. Pengaruh Teknologi Internet of Things terhadap Manajemen Aset Digital secara Real-Time. J. Tek. Inform. 17, 84–90.

Pangaribuan, W., Tambunan, H., Riris, I.D., 2024. Strategi Minimalisasi Kesenjangan Peralatan Dan Bahan Praktikum Laboratorium Ipa Sekolah Menengah Pertama.

Panudju, A.A.T., Judijanto, L., Apriyanto, A., Jumiono, A., Pajala, S., Suharyanto, S., Demmanggasa, Y., Marfuah, U., Herlina, R.L., Sudarwati, W., others, 2025. Pengantar Teknik Industri. PT. Sonpedia Publishing Indonesia.

Prasetia, R.D., Widiasari, I.R., 2025. Perancangan IoT Monitoring Lingkungan Berbasis Wireless Sensor Network (WSN) Dengan Menerapkan Multi Sensor Network (MSN). JIPI J. Ilm. Penelit. Dan Pembelajaran Inform. 10, 652–666.

Purnama, A.A.T., Turmuzi, T., Novianto, B.D., Kusrini, K., others, 2024. Penerapan Machine Learning untuk Deteksi Kebocoran Gas dalam Sistem Internet of Things: Studi Algoritma K-Nearest Neighbor, in: Seminar Nasional Penelitian (Semnas Corisindo 2024). pp. 537–543.

Razilu, Z., 2025. Inovasi Pembelajaran Integrasi Artificial Intelligence dalam Teknologi Pendidikan. Penerbit Widina.

Wahyuzi, Z., 2024. Analisis dan Prediksi Konsumsi Listrik Smart Office Berbasis IoT Terhadap Faktor Internal dan Eksternal Menggunakan Deep Learning (PhD Thesis). Universitas Islam Indonesia.

.